If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+16y-28=0
a = 9; b = 16; c = -28;
Δ = b2-4ac
Δ = 162-4·9·(-28)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{79}}{2*9}=\frac{-16-4\sqrt{79}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{79}}{2*9}=\frac{-16+4\sqrt{79}}{18} $
| u(u-7)=0 | | -16/t=4 | | 3d/4-2=7 | | 2n+3n+7n=-43 | | (4y)(4y)-9y2=28 | | 6g-8=-20 | | (3r-8)(8r+9)=0 | | h(h+6)=0 | | 28=y/5-9 | | (5x-1)+(2x+49)+90=180 | | (m+2)(m-7)=0 | | 7(p+3)+9=(5p-2)-3p | | 1/3z-2=5-8/3z | | 5x+x+4=-56 | | 5x+x+4=156 | | n²-3n-208=0 | | (m+2)(m−7)=0 | | n-3n-208=0 | | x=-5-362 | | n2-3n-208=0 | | n+9/3=-2 | | 5x2-12=17x | | (d+4)(d+1)=0 | | 6x+4+5x=59 | | x3-2x2-6x+72=0 | | 7-2b=-9 | | 8+4x=4x | | 2×(w-2)=16 | | 3(t-10)=18 | | (s-2)(s+6)=0 | | x/8=41 | | 4(n+16)=12 |